Efficacy of the LiSN & Learn auditory training software: randomized blinded controlled study

Main Article Content

Sharon Cameron *
Helen Glyde
Harvey Dillon
(*) Corresponding Author:
Sharon Cameron | Sharon.Cameron@nal.gov.au

Abstract

Children with a spatial processing disorder (SPD) require a more favorable signal-to-noise ratio in the classroom because they have difficulty perceiving sound source location cues. Previous research has shown that a novel training program - LiSN & Learn - employing spatialized sound, overcomes this deficit. Here we investigate whether improvements in spatial processing ability are specific to the LiSN & Learn training program. Participants were ten children (aged between 6;0 [years;months] and 9;9) with normal peripheral hearing who were diagnosed as having SPD using the Listening in Spatialized Noise - Sentences test (LiSN-S). In a blinded controlled study, the participants were randomly allocated to train with either the LiSN & Learn or another auditory training program - Earobics - for approximately 15 min per day for twelve weeks. There was a significant improvement post-training on the conditions of the LiSN-S that evaluate spatial processing ability for the LiSN & Learn group (P=0.03 to 0.0008, η 2=0.75 to 0.95, n=5), but not for the Earobics group (P=0.5 to 0.7, η 2=0.1 to 0.04, n=5). Results from questionnaires completed by the participants and their parents and teachers revealed improvements in real-world listening performance post-training were greater in the LiSN & Learn group than the Earobics group. LiSN & Learn training improved binaural processing ability in children with SPD, enhancing their ability to understand speech in noise. Exposure to non-spatialized auditory training does not produce similar outcomes, emphasizing the importance of deficit-specific remediation.

Downloads month by month

Downloads

Download data is not yet available.

Article Details

Author Biography

Sharon Cameron, National Acoustic Laboratories, Chatswood, NSW

Senior Research Scientist